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Reverberation Process at Low Frequencies

by

Holger Larsen

ABSTRACT

The reverberation process in a rectangular room was investigated using sophisticated instru-
mentation. By averaging many reverberation decays it was possible to determine the decay
curves free of interference allowing the details to be seen. The decay curves measured
show some curvature especially at low frequencies and as a result there are discrepancies
between reverberation times determined from the early decay rate and from those deter-
mined from the slope between —5 and —35dB, as suggested by ISO Standards 354 and
3382.

The reverberation process for a frequency band is the result of the decays of the normal
modes in the band, each mode decaying with its own time constant which depends essen-
tially onthe mean free path between reflections. A formula for the mean free path is derived
and hence a formula for the decay curve is also derived. Good agreement was obtained be-
tween the measured and calculated decay curves.

SOMMAIRE

Le processus de réverbération dans une piéce rectangulaire a été étudié au moyen d’instru-
ments de mesure sophistiqués. L'intégration de nombreuses courbes de réverbération per-
met de déterminer une courbe d’amortissement libre de toute interférence a partir de la-
quelle on peut examiner les détails. Les courbes d’amortissement mesurées présentent une
courbure particulierement aux basses fréquences et ceci conduit & des écarts entre les
temps de réverbération déterminés a partir de la pente a I'origine et ceux déterminés a par-
tir de la pente entre —5 et —35 dB,omme le suggérent les normes ISO 354 et 3382.

Le processus de réverbération pour une bande de fréquence donnée est le résultat de I'amor-
tissement des modes propres dans cette bande de fréquence, chaque mode s’'amortissant
avec sa propre constante de temps, laquelle dépend essentiellement du libre parcours
moyen entre les réflections. On déduit une formule donnant le libre parcours moyen et, de
la, une formule donnant la courbe d’amortissement. La corrélation entre les courbes d’amor-
tissement mesurées et calculées s’est avérée bonne.



ZUSAMMENFASSUNG

Mit einem anspruchsvollen MeRaufbau wurde der Abklingvorgang von Schall in einem qua-
derformigen Raum untersucht. Durch die Mittelung Uber viele Nachhallmessungen war es
moglich, eine Abklingkurve zu ermitteln, bei der der EinfluR von Interferenzen unterdriickt
ist, und Einzelheiten sind erkennbar. Die gemessenen Abklingkurven zeigen eine gewisse
Krimmung, speziell bei tiefen Frequenzen, und als Ergebniss erhielt man unterschiedliche
Nachhallzeiten, wenn am Beginn der Abklingkurve und im Bereich zwischen —5 und
—35dB, wie in ISO 354 und 3382 empfohlen, gemessen wird.

Der Nachhallvorgang fiir jedes Frequenzband ist das Ergebniss vom Abklingen der Eigenfre-
quenzen in diesem Frequenzband, welche jede mit ihrer eigenen Zeitkonstante abfallt die
im wesentlichen von der mittleren freien Wegldnge zwischen den Reflektionen abhangt.
Eine Formel fiir die mittlere freie Weglange wird entwickelt und daraus eine fiir die Nach-
hallkurve. Zwischen der errechneten Kurve und praktischen Messungen zeigten sich gute
Ubereinstimmungen.

Introduction

Reverberation time is an important factor in assessing the acoustic qual-
ity of a room. It is also used in the determination of isolation, absorp-
tion, and sound power. Reverberation time for a given frequency band
is defined as the time required for the average sound pressure level,
originally in the steady state, to decrease 60dB after the source is
stopped. Although there are several methods by which it can be deter-
mined, the classical method, where the sound pressure level decay is
registered on a level recorder, is still the most common and is also stan-
dardised in ISO 354 and 3382 Ref.[1, 2]. It is assumed in these stand-
ards that the decay rate is exponential and therefore manifests itself as
a straight line when the sound pressure level is represented on a logar-
ithmic scale. However, on account of the interferences between the in-
dividual eigenmodes the curve traced out is not smooth, especially at
low frequencies where the number of eigenmodes are relatively few.
Fig.1 shows typical examples of decay curves at low frequencies. Ac-
cording to the standards the reverberation time is determined from the
slope of a line drawn on the decay curve between —5dB and —35dB
levels below the steady state level. To improve the accuracy an average
value is determined from a number of curves obtained with different
microphone and source positions.

At low frequencies, however, the sound pressure does not often decay
exponentially and the decay curve deviates from a straight line on a lo-
garithmic plot. Several authors [3, 4] have investigated this pheno-
menon theoretically, where it is shown that the slope at the start of the
decay curve (early decay rate) is numerically highest and reduces as the
level decreases. It has been difficult to substantiate the theoretical treat-
ment with practical measurements upto the present day on account of
the uneveness of the curves mentioned above.
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Fig.1. Examples of 100Hz 1/3 octave band decay curves using the
classical method. The same measurement repeated three
times

Today, however, sophisticated instrumentation and new methods have
been developed which permit reverberation time measurements to be
carried out with a much higher degree of accuracy. Such a measure-
ment method which makes use of a digital real time parallel analyzer
and a desk-top calculator is described in Technical Review No.2—1977
[5]. The purpose of this article is to illustrate this method with some
measurement results and analyze the reverberation process at /ow fre-
quencies.

A Microphone 4134

Desk top calculator

Digital Frequency
Analyzer 2131

A

Noise Generator

1405
-

Remote Enable (REN)

S;und Pov;er
Source 4205

Fig.2. Automatic system for reverberation time measurements
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Measurement Method

Fig.2 shows an instrumentation set-up for automatic measurement of
reverberation time. The system is controlled remotely by the desk-top
calculator and operates after the following procedure: the Noise Genera-
tor Type 1405 is started and sends a pink noise signal to the Sound
Power Source Type 4205 which is used here as a power amplifier for
the loudspeaker Type HP 1001. After a steady state sound field is built-
up in the room, a signal to the Digital Frequency Analyzer Type 2131
starts recording of the spectra over short time intervals and soon after
the sound source is stopped, see Fig.3. During each time interval the
frequency spectra are recorded over a selected averaging time and the
averaged spectrum then readout to the desk-top calculator and stored.
(Each time interval is made up of an averaging time plus read-out time).

Sound pressure Level

A

Sound decay

Sound
build-up

Background
noise

v

Time Intervals

Frequency
Channels

|

|

| e ) -

| il Averaging — |

> Time

) I e |

° 5 @ =

g =38¢g Time g I

g g g g Interval & |

@ ® %5 8 » @

2 S e g 2

» 2 & 8 o = |

< 9w w ° ©

5 g€ © o 35 c 2

s} o = 0 5 L o

a - 5 5 3 = >

el © 9 o g 2 = ©

€ ¢ © v € 3 3 o

i :E3z H $ 5

:|n heaoo o« (&) z

L |
»l

- One Cycle »>| 80847

Fig. 3 Time history for one measurement cycle



Time Interval Averaging Time
ms s ms
44 1/32 31,25
66 — 110 1/16 62,5
132 — 242 1/8 125
264 — 484 1/4 250
Table 1 o0

The shortest time interval that can be chosen is 44 ms. Larger time in-
tervals can be chosen (depending on the averaging time see Table 1) in
steps of 44 + n.22 where n is an integer. After the spectra have been
recorded and read-out for a maximum of 65 time intervals and time al-
lowed for calculation, the sound source is started again and the cycle
repeated. The time taken for each cycle is between 40 and 60 s depend-
ing on the chosen parameters. The cycle is repeated as many times as
desired after which the average level in each of the time intervals for
each frequency band is calculated.

The reverberation time may now be evaluated using the calculator for
each frequency band or the average levels in each time interval can be
fed to a level recorder and the reverberation time evaluated from the
slope of the curves for each frequency band.

For the measurements a reverberation room in the Acoustics Labora-
tory at the Danish Technical University (D.T.H.) was used.

Twenty diffusors of area 1,2 x 0,9 m2 were installed in the room the di-
mensions of which are given in Table 2.

Length m 7,85
Width m 6,25
Height m 4,95
Volume m3 243
Surface area (without diffusers) m2 238
Number of diffusers 20
Surface area of diffusers m2 | 09x 1,2
7580104
Table 2



Measurement Results

a) Measurements with stationary source and microphone positions
The microphone and source positions are shown in Fig.4. For source po-
sition- A measurements were carried out for all the microphone posi-
tions while for position B only microphone positions 1, and 2 were
used. Figs.ba and b show reverberation curves plotted on a level recor-
der chart for 1/3 octave frequency bands of centre frequencies 80 Hz
and 160Hz respectively, for different source and microphone positions.
Values of 600 spectra have been averaged for each time interval which
was chosen to be 110 ms.

It can be seen from the figures that the random fluctuations of the
curves have disappeared on account of averaging over a large number
of spectra. But the curves still show some irregularity, the magnitude
of which depends on the source and microphone positions. The irregu-
larities would seem to be due to the interference between the eigen-
modes with slight differences in the resonant frequencies.

The problem of interference could be avoided if spatial averaging, in ad-
dition to the time averaging was also carried out. In other words, the le-
vel in each time interval would be averaged over a number of spectra
and over a number of source and microphone positions. To try this out
further measurements were taken with a rotating microphone whilst re-
volving the source in the room.

D Source positions

O Microphone positions

The source was placed
on the floor, the
microphone height was
about 2 m

jl€——I, = 6,25 m——»]

——— |, =785 m— 3

780848

Fig.4. Stationary source and microphone positions for reverberation
time measurements
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Decay curves for stationary sound source and microphone posi-
tions. Time interval 110 ms.

a. 80 Hz 1/3 octave band.
b. T60Hz 1/3 octave band.



b) Measurements with rotating microphone and sound source

Fig.6 shows a measurement set-up where the sound source is
mounted on the end of a wooden beam fixed to a Turntable Type 3922.
The sound source was rotated in a circle of radius approx. 2 m with a
rotation time of 80s. The Microphone Boom Type 3923 was used for
rotating the microphone in a circle of radius 1,6 m and rotation time
64s.

The reverberation curves obtained using the instrumentation described
above are shown in Figs.7a and b. It can be seen that the curves are re-
gular (due to the absence of interferences) but with some curvature
which is especially noticeable for low frequencies. In each time interval
of 110ms the levels have been averaged over approx. 1600 cycles,
and as each cycle takes about 1 minute the total measurement time in-
volved was approx. 27 hours.

From the decay curves in Fig.7 the reverberation times T have been
evaluated according to 1SO standard 354 by using the slope of the
curves between the —5dB and —35 dB levels. The reverberation times
evaluated from the slope of the early decay rate are designated by T,.

Fig.6. Measuring set-up for rotating sound source and microphone
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Fig.7b. Decay curves for rotating sound source and microphone Time
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Fig.8. Reverberation time measured according to 1ISO 354 (—5 to
—356dB) and early decay rate calculated from curves in Fig.7.
Time interval 110 ms

Both T and T, are plotted against frequency in Fig.8 and it can be seen
that T is much lower than T for low frequencies.

In order to examine the early decay rate of the reverberation process in
greater detail, further measurements were taken with a time interval of
44 ms instead of 110 ms. The levels in each time interval were again
averaged over 1600 cycles. Fig.9 shows the reverberation curves while
in Fig.10 the early decay rates obtained for 44 ms and 110 ms time in-
tervals are compared.
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Fig.10. Reverberation time measured using a time interval 44 ms
compared to measurements using 110 ms

Sound Pressure, Particle Velocity and Energy Density Distribution in
a Room

When a sound source is operated in a room, a number of different
room resonances (sometimes referred to as normal modes or eigen-
modes) are excited. The type of eigenmode excited depends on how the
initial wave is reflected and returns to the point of excitation in the
same phase and direction as the initial wave. In a rectangular room the
simplest eigenmode is the ax/a/l mode in which the component waves
travel along one axis (one dimensional) parallel to two wall pairs as
shown in Fig.11a. The sound pressure in the room varies as shown by
the curve in the Figure. It can be seen that when a moving microphone
is used, the RMS value of the sound pressure in the room will be mea-
sured which is V2 times lower than the values at the points of maxima.
The sound pressure variation in the room can also be illustrated by
drawing lines through points of equal pressures. As shown in Fig.11b
these points lie in planes for axial waves.

Fig.11c shows planes formed by points of equal particle velocities and

16
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Fig.11.  Sound distribution in a rectangular room for an axial mode.
Values are normalized to maximum effective sound pressure P.
a. Sound pressure pattern, mode (4,0,0)
b. Sound pressure contours on a section through the room,
mode (2,0,0)
c. Particle velocity contours, mode (2,0,0)
d. Energy density contours, mode (2,0,0). For an axial mode
the energy density is uniform

it can be seen that the planes with maximum pressures occur at the
points of zero particle velocity and vice versa.

The energy density is uniform all over the room as shown in Fig.11d
for axial waves. At any point in the room the energy density is obtained
by determining the sum of the squares of the normalised values given
in Figs.11b and c. The mathematical derivation of the values shown in
these figures is given in Appendix A.
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Another type of eigenmode is one in which the component waves are
parallel to one pair of walls but are oblique to the other two pairs (two
dimensional) and is termed a tangential mode, Fig.12a. Figs12b, c and
d show surfaces with constant pressure, particle velocity and energy
density for a tangential mode. It can be seen from Figs.11 and 12 that
for a tangential mode, in contrast to an axial mode, there are points in
the room where the sound pressure, particle velocity, and energy den-
sity are all zero.

The third type of an eigenmode is one in which the component waves
are parallel to none of the three wall pairs and is termed an oblique
mode. Fig.13 shows surfaces with constant pressure for an oblique
mode. As for the tangential modes, the oblique modes have points in
the room where the sound pressure, particle velocity and energy den-
sity are all zero.

Y 780899

Fig.13. Sound pressure distribution in a rectangular room for the ob-

lique mode (2,1,1). Values are normalized for maximum effec-
tive sound pressure P.
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The resonant frequency (eigentone) of each eigenmode can be calcu-
lated from the formula

ST w o

where c is the velocity of sound in m/s
Ix ly and |, are the dimensions of the room in m
and n, ny and n, are integers

To evaluate the frequencies for axial modes, two of the ns are set to
zero while for tangential and oblique modes one of the ns and none of
the ns are set to zero respectively. The number of eigentones of the

100(5) / //
AN2 Q/ / %
100 ‘/ ’/

/

10 // // =
5 / ’w//

9 // P
20 50 100 200 500 Hz 1000

780685

Fig.14. Number of actual eigenmodes in the 240 m3 room in each

1/3 octave band represented by crosses, circles and dots for

axial, tangential and oblique modes respectively. The curves are
obtained from the abbreviated formulae grven in ref.[8]
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measurement room lying in 1/3 octave bands are represented by
crosses, circles and dots for axial, tangential and oblique modes respec-
tively in Fig.14. It is time consuming to determine the number of eigen-
modes using the above formula at higher frequencies as the number of
modes increases considerably. However, approximate expressions for
determining the number of eigenmodes are derived in Ref.[3] and
quoted in Ref.[8] from which Fig.14 is reproduced. It can be seen that
the axial and tangential modes dominate at low frequencies while the
obligue modes dominate at high frequencies.

In statistical treatment of acoustics, it is assumed that the sound field
in the room is diffuse i.e.

a) the energy density in the room is uniform everywhere,
b) the energy flow in all directions is the same and
c) the phase between all waves is random.

The above requirements are fulfilled if there are a large number of ei-
genmodes in the room, which is the case at high frequencies. At low
frequencies, however, the above requirements are not fulfilled and
therefore it is necessary to use wave theory instead of statistical the-
ory. In the following the wave theory will be used to explain the curva-
ture in the reverberation decay curves at low frequencies, by treating
the eigenmodes in each frequency band individually.

Theory

When a sound source excites a room, forced oscillations are generated,
characterised by the spectrum of the sound source and its position in
the room. When the sound source is stopped, the oscillation pattern is
changed in that only the normal modes of oscillations will now exist in
the room. The damping of the oscillations takes place on account of ref-
lections from the walls and to a much lesser extent on account of air
damping. The Q factor of the eigenmodes is thus determined by the ab-
sorption coefficient of the walls and the mean free path between reflec-
tions. As the mean free path is generally longest for the axial modes
they will have a longer reverberation time than the tangential and ob-
lique modes.

Mean Free Path
The mean free path for an axial mode can immediately be seen to be
the same as the dimension of the room in the direction of the wave.

21



The general expression for the mean free path ¢, for all the three types
of eigenmodes is given below and is derived in Appendix B.

T,

n, n,
Lttty
X Y 4

[o—
[a—

Steady State Sound Pressure in a Frequency Band

A monopole sound source emitting white noise with a volume velocity
spectral density q [m3 /s/VHz] is rotated in a room. The sound pres-
sure is measured by a rotating microphone away from the source. It is
shown in Appendix C that the steady state sound pressure squared in
the room for a single eigenmode will be given by

_ 04(12927.5"1‘i ) .
Po = Vitene e, 1210 OV/m (3)

where q is the volume velocity spectral density [m3/s/VHz]

p is the air density [kg/m3]

V is the volume of the room [m3]

T, is the reverberation time for the ith eigenmode [s]

€yi €yi and €, are values depending on the integers for n, ny
and n,

€=1forn=0

€=2forn>0

Equation (3) can be written as

T
Pi=Ci—— (4)
0 1 (exl yl
R
where C, = V2 12Inlo 'S @constant

If there are I number of eigenmodes in the frequency band considered,
the total RMS sound pressure squared (averaged in time and space) in
the frequency band will be given by
2 2 2 2
p30=p10+p20+---plo (5)
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where O represents steady state value and p,,, p,,
sound pressures for the I eigenmodes

. Pg are the
Substituting (4) in (5) we get

T
péozc !

T
C 2
! (8x1 leZI)Z + ! (6x2£y2522)2 +
. 2 I T1
ie. Ppo= (e (6)
xi yx 21
Dividing (4) by (6) we obtain
N VO
(p10)2 _ _(%ﬁxl_m_)___
] T 1 T (7a)
Pso ¥ —
x=1(8 i€

xi€yi€zi

As the reverberation time is proportional to the mean free path ¢ (see
next section) the above equation can also be written as

L
2 e .£ )
(g&) — I(exlezxz\'zl) (7b)
BO E i
el RN

xi®yi®zi

It can be seen that the steady state sound pressure squared for the indi-
vidual eigenmodes is proportional to its reverberation time or its mean
free path.
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Reverberation Time
When the sound source exciting the room is stopped the energy density
in each eigenmode will decrease according to the formula

D(t) = D(1 — o)
or  p=pil—o)*

where D, is the steady state energy density whent =0
D(t) is the instantaneous energy density
pio is steady state sound pressure whent =0
p; is the instantaneous sound pressure
a is the number of reflections in time t
a is the absorption coefficient of the walls

C
a=+t

.

where c is the velocity of sound
and £, is the mean free path for the ith eigenmode

Substituting we get

< C
St st In(l —)
— i h
p? =pii(l —o)t =p;gets

< 1
ie. Pi=pge ﬁi{ln(fj‘;) (8)

When t = T; (reverberation time), b 1073
i0

Substituting we get c I
e, T - 64LIn10  641n10 (9)

= <1)“ c-
cln{——
] —«

for small values of «a.

" Inx = loggx and logx = log 10%
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The reverberation time can be seen to be proportional to the mean free
path and inversely proportional to the absorption coefficient a.

Equation (8) can also be written as

loge

C
ey
p: &~ pe i &~ p,l0 2‘

Substituting equation (9) in the above equation we obtain

3t it
Py ~ Py 10" 9T~ p,10 T (10a)
e 2 pi:—ﬁo% (10b)

i0 i

The collective reverberation time of the whole frequency band can now
be evaluated. The instantaneous sound pressure squared of the fre-
quency band is given by

ps =pi+p;+...p’ (11)

where p; ... p; are the instantaneous values of the RMS sound pres-
sures of each eigenmode at time t

Substituting (10a) in (11) we get

t el

el et
pe=p3l0 T4p210 T4...+p2l0 N

Substituting (4) in the above equation we obtain

T, T, 6
—-C, =10 Tl +...4+4C 10 T 12
b ! (‘(:xl"gyl‘gzl)2 ! (sxleylezl) ' ( )
Dividing the above equation by (6) gives
1 6L
) Z _T___ 10 Tx
<&) —i=1 (exleyﬂs (1 3)
Pso - L
i=1 (6x1 yl
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The above equation illustrates the sound pressure decay of a frequency
band with I number of eigenmodes and their respective reverberation
times.

Calculation of Reverberation Decay Curves

With the use of the formulae derived above, the reverberation decay
curves for each eigenmode and the collective reverberation curves for
63 Hz, 80Hz and 100Hz 1/3 octave bands are calculated. As the ab-
sorption coefficient o of the walls is not known, the values used are
those which give the best correlation between the calculated and the
measured decay curves, see ""Absorption Coefficient”’ section under Dis-
cussion of Results.

Pio

P | Nyi | Nz |ExEyEs f, g 20 log _pE(—)- o =0,024

[Hz] | [m] [dB] T, [s]
111 2 0 4 58,6 5,11 -11,3 8,7
212 1 1 8 61,6 3,67 — 18,7 6,2
3|0 2 1 4 64,3 4,11 —12,2 7,0
413 0 0 2 65,0 7,85 - 34 13,3
51 2 1 8 67,9 3,69 - 18,7 6,3
6|0 0 2 2 68,7 4,95 — 54 8,4
712 2 0 4 69,6 4,89 - 11,6 8,3
8|3 1 0 4 70,4 5,68 - 10,7 9,4

790105
Table 3

In Table 3 the frequencies of the eigenmodes lying in the 63 Hz 1/3 oc-
tave band are calculated using eq(1). The mean free path and the rela-
tive steady state sound pressure for each eigenmode are evaluated
from eq.(2) and (7b) respectively, while the theoretical reverberation
times are calculated from eq.(9). The slope of the reverberation curves
for each eigenmode can be plotted using eq.(10b) while the start of the
reverberation curves are given by the relative steady state levels. The
reverberation curves for each eigenmode is thus calculated from the
equation

20 log P; =—@t—2010g&’— (14)

Pio T, Pso

and plotted in Fig.15.
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Calculated decay curves for the 63 Hz 1/3 octave band com-

The collective reverberation curve for the 1/3 octave 63 Hz band can
be plotted either by adding the reverberation curves on energy basis for
the eight eigenmodes, or by using eq.(13) and is shown by the dashed
line in Fig.15. The values in Fig.15 indicated by circles are the actual
measured values for the 63Hz 1/3 octave band and are taken from

Fig.7a.
. Pio \ 2
Eigenmodes €4€/€, g 10logm <_5-—> a = 0,026
BO
Number [ Type [m] [dB] T, [s]
m=1 axial 2 7,85 - 4,9 12,3
m=1 axial 2 6,25 — 5,8 9,8
m=8 tangential 4 4,51 - 4,3 7,0
m=4 oblique 8 3,74 - 141 5,8
790100
Table 4
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Fig.16. Calculated decay curves for the 80 Hz 1/3 octave band com-
pared to measured values. The tangential and obligue modes
are calculated in groups

Tables 4 and 5 show similar results for the 80 Hz and 100Hz 1/3 oc-
tave bands. As there are a large number of eigenmodes in these fre-
quency bands, the tangential and oblique modes have been grouped se-

p; 2
Eigenmodes Ex€yE, 2 10logm <p_|0_> o =0,022
BO
Number | Type [m] [dB] T [s]
m=1 axial 2 7,85 - 6,8 14,5
m=1 axial 2 6,25 - 78 11,6
m=1 axial 2 4,95 — 8,8 9,2
m=13 tangential 4 4,87 - 3,8 9,0
m=12 oblique 8 3,82 - 11,2 7.1
790101
Table 5
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@
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Fig.17. Calculated decay curves for the 100 Hz 1/3 octave band com-
pared to measured values. The tangential and oblique modes
are calculated in groups

parately and the average value of their mean free paths and reverbera-
tion times evaluated. The relative steady state sound pressure level for
the whole groups have also been evaluated. The reverberation curves
for the 80Hz and 100Hz 1/3 octave bands are plotted in Figs.16 and
17 and compared with the measured values.

Discussion of Results

It can be seen from Figs.16 and 17 that there is good agreement be-
tween the calculated and measured results. There is however a princi-
pal difference, in that the collective calculated curves have slightly less
curvature than the curves obtained from measured results. For the the-
oretical curves the absorption coefficient is assumed to be independent
of the angle of incidence. Fig.18 which is reproduced from Ref.[3]
shows typical curves for the variation of the absorption coefficient as a
function of the angle of incidence. The curves are plotted for different
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Fig.18. Angle dependence of the absorption coefficient according to
the theory of true impedance. The path of glancing incidence,
however, is corrected.

values of the acoustic impedance of the wall. 0° refers to normal inci-
dence. The absorption coefficient can be seen to be greater for oblique
incidence than for 0° and 90° incidence. This would mean that the ax-
ial modes would be less damped and thus have longer reverberation
times than calculated while the tangential and oblique modes will have
lower reverberation times. As a result there would be better agreement
between the calculated and the measured curves.

The agreement is, however, not as good in Fig.15. This could be be-
cause the cut-off frequency of the loudspeaker was at 100 Hz and
therefore the frequency spectrum was not flat at 63 Hz as assumed. As
the level at 63 Hz was also low, the background noise could have had
some influence on the measured curve.

From the curves it is evident that the axial modes have a dominating in-
fluence on the reverberation decay process. For the 80 Hz frequency
band the reverberation curve below the —15 dB level is almost entirely
determined by the eigenmode (4,0,0) which corresponds to an axial
mode in the direction of the length of the room. Although there are
eight tangential modes they have little influence on the reverberation
curve while the oblique modes have practically none.

Absorption Coefficient
The absorption coefficients a given in Table 6 have been evaluated us-
ing Sabines formula a = 0,161 V/ST. The reverberation times used for
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Centre frequency [Hz] 63 80 100

@, (from T measured over 30 dB) 0,013 0,015 0,014
Qg (from early decay time) 0,018 0,019 0,018
o  (from table 3,4 and 5) 0,024 0,026 0,022
790102
Table 6

the evaluation have been taken from Fig.8, both for the early decay
rate and for the slope between the —5 and —35 dB levels. Also shown
in the table are the values assumed for Figs.15, 16, and 17. It can be
seen that there are significant differences between the values and is
due to the fact that Sabine’s equation has been derived using a mean
free path of 4V/S. However, the average value of the mean free path
will be greater on account of the axial modes dominating at low fre-
quencies. For the room used here 4V/S is equal to 4,08 m. From
Tables 3,4 and 5 the mean values of £ can be found to be 4,98 m,
4,65m and 4,58 m for the 63 Hz, 80Hz and 100Hz 1/3 octave fre-
quency bands respectively. Using these values of the mean free path
and reverberation time from early decay rate in Sabines formula the ab-
sorption coefficient is found to be 0,023, 0,022 and 0,021 in the
three bands respectively. These values are close to the values assumed
for Figs.15, 16 and 17.

Energy Content in the Eigenmodes
The energy in an eigenmode is given by

2
E=%V (15)

o

Substituting eq.(4) in (15) we obtain

T Vv
- (16)
E=Ceer o

assuming that the sound pressure is averaged over the whole room
whilst revolving the source. As (exeyez)2 is equal to 4, 16 and 64 for
axial, tangential and obliqgue modes respectively, the energy content for
the axial and tangential modes relative to the oblique modes can be cal-
culated.
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EO=TO'?=?O‘16 (17)
E_T 16_T 18
E-T 4 T * (18)

where T, T, and T, are reverberation times for axial tangential and ob-
lique modes respectively.

As T,/T, = 2 the energy content is up to 32 times greater in an axial
mode than in an oblique mode, and more than 4 times greater in a
tangential mode than in an oblique mode as T, > T,.

Conclusion

With the use of a Digital Frequency Analyzer Type 2131 and a desk-top
calculator it is possible to carry out very accurate reverberation time
measurements by averaging with a movable microphone and sound
source. The curvature of the reverberation curves at low frequencies is
caused on account of the axial modes dominating the last stages of the
reverberation process on account of their long reverberation times and
high energy content. This has been made clear with relatively simple
and approximate calculations of the reverberation process of the individ-
ual eigenmodes in a frequency band.

On account of the curvature there is a considerable difference between
the reverberation time evaluated over 30dB (as defined in ISO R 354
and 3382) and that evaluated from the early decay rate upto 500 Hz
(see Fig.8) for the measurement room used here.
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Appendix A

Sound Pressure, Particle Velocity and Energy Density Distribution in
a Rectangular Room

From the wave theory of room acoustics ([9] [10] and others) the follow-
ing formulae are known:

Ipl = |[Pcosk,xcosk,ycosk,z| [N/m?] (A1)

where p = effective sound pressure at the point x, y, z N/m?
P = maximum effective sound pressure (e.g. in a corner) N/m?
X, y, z are the coordinates from one of the corners in the room m

n,m n,n n,
k, = , k,==*= and k,= T are
1 1, 1,
wave numbers in the three directions, m—1 .
Iy, l, and I, are the dimensions of the room, m.
Ny, ny and n, are integers n =0, 1, 2 ..
lu,| = ujg sink, xcosk,y cosk,z| [m/s] (A2)
P .
u,| = J—Q cosk,xsink,ycosk,z| [m/s] (A3)
w
lu,| = (j‘@ cosk,x cosk,y sink,z| [m/s] (A4)
L

where u,, u, and u, are the particle velocities in the three directions x,
y and z respectively m/s
w = angular frequency rad/s
p = density of air kg/m3
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D=D,+D, [J/m?] (A5)

D, = é'p ey (AB)
D, =loluP =1o(lu P+ lu >+ [u,?) [J/m?] (A7)

where D = total energy density
D, = potential energy density
Dy = kinetic energy density
¢ = speed of sound in air m/s

Axial modes

For an axial mode in the x-direction:

ny>0,ny = 0,n, = O and hence ky, =0 and k, = O.

From (A1) the sound pressure distribution in the room can be derived:

Ip| = [P cos kx| =\

which, for ny, = 2 and normalized to P, becomes

8-

from which the values in Fig.11b were calculated.

2n
cosTX

X

(A8)

From (A2) the particle velocity distribution in the room can be derived:

=

which, for n, = 2 and normalized to U = P/pc (particle velocity in a free
field corresponding to the sound pressure P) becomes
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LAY sin&x sinz——”x (A9)
U 10 1, 1,
as kx = k = w/c. From (A9) the values in Fig.11c were calculated.
From (A6) and (A8) the potential energy density is obtained:
1 P2 27
Dp 5 —zcosszX
and from (A7) and (A9) the kinetic energy density is:
| . L 2m
D, == oU?%sin2==
k 2 @ S lx X
. P
which for = — becomes:
oC
1 P?
D, = 5 s 1n21—xx
The total energy density becomes
1 P2 2n 2n
D=D,+D, = (cosz———x+sm2—x)
2 oc? 1, 1,
P
D= % —  [J/m3 (A10)

This means that the total energy density is independent of x as shown
in Fig.11d.

Tangential modes
For a tangential mode in the x- and y-directions:

ny>0, ny>0, n, = 0 and hence k, = O

From (A1) the sound pressure distribution in the room can be derived:
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n,n n,w ‘
1 LY

Ip| = [Pcosk,xcosk,y| = l

which for ny = 2 and ny = 1 and when normalized to P becomes

4
COS—y =

(A11)
ly COoS

ro| U T

Ed
L
from which the values in Fig.12b were calculated.

From (A2) and (A3) the particle velocity distribution in the room can be
derived:

2
w=ul+tul= I:2
w

<sin*k, xcos’k,y+k2cos’k,xsin’k,y) (A12)

which when normalized to

29_12 =§§ where k =+/k2+k? , becomes:
2 2
(%) =(%> sin*k, x(1 —sin?k, y)+(k )coszk xsin? k,y

from which, for ny = 2 and ny = 1, the following formula can be der-

ived:
2 2
(4:)1\ +1> '32 sngl—x
5 ozzz—sm2&x
412°% 71, I

mm?y= (A13)

Yy

From (A13) the values in Fig.12c were calculated.

From (A1) and (A6) the potential energy density is obtained:

P2

v T3 40 —cos’kxcos’k,y
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2
which together with ‘C"—z —k>=k2+k? gives:

2
2—2 (k2+k2)cos?k,x cos?k,y

ow

1
Dp=§

From D=D,+D, =D, +10u’ and (A12) are obtained

1 P? .
— [(k,% +k2)cos’k,x cos’k, y+k?Zsin’ k,x cos’k,y

2 pw?

D:

+k2cos’k, xsin’k, ]

2
D :% P E (kfcos2 k,y +k/cos? kxx>
ow
. . 1 P2
which normalized to Dy = 3 Q——Z gives
D 1 2 a2 2 coa2
Do = m<kx cos?k,y +k}cos kxx)
X v

from which for n, = 2 and n, = 1 the following formula can be derived:

2, _ D AW P
CoS lyy DN(1+413,> 41y2cos ]xx (A14)

From (A14) the values in Fig.12d were calculated.

Oblique modes
From (A1) the sound pressure distribution in the room can be derived.
Normalized to P and setting nx = 2, n, = 1 and n, = 1 one obtains:

p

n P

cosl—y=i T oa (A15)
y JT JT

COST-Z‘COS—I—X

z X

From (A15) the values in Fig.13 were calculated.
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Appendix B

Mean free path between reflections

780853

Fig.B1. Frequency vector f in a 3 dimensional rectilinear co-ordinate
system

Each eigenmode in a rectangular room can be considered as a vector (f
in Fig.B1)in a 3—D co-ordinate system whose origin is one of the corn-

ers of the room.

The direction of the vector gives the direction of the sound wave mov-
ing in the room with the speed of sound c. If the vector is resolved into
three components in the x, y and z directions, the number of reflections
in the time t can be determined:

ctcos O,
1

Number of reflections against the y—z walls:

X
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ct c<l)s (-);,

Number of reflections against the x—z walls:

v
cteos 0,
1

Number of reflections against the x—y walls:

z

The mean free path £ can be expressed as the distance the sound wave

moves in the time t divided by the total number of reflections in the
same time

ct
T ctecos@®,  ctcos@,  ctcosO,
1, ] ]

v

z

which together with the following formulae derived from Fig.B1:

_ n.C o e o nec
cos()x—zle, cos0y—2lyf, cos@, = 0
_ n.c\? (n.c\  /n.\
ona 1= (55 + (3 + 37)
OB () (D)
‘2V<1x) <1> ‘*“(1,)
gives:
2f
/ c
n,, oy, n,
FRNERT
2 n 2 n 2
V(l) L 1,
L= o n [m] (B1)

This formula for the mean free path is valid for axial, tangential and ob-
ligue modes.
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Appendix C

Calculation of space averaged squared sound pressure for an eigen-
mode in a rectangular room

For a sound source, radiating sound with a volume velocity, Q,, at an
angular frequency, w, situated at a point (xg, Ys. Zs) in a rectangular re-
verberation room, it can be shown [6] [7] that the RMS sound pressure,
Pio. measured at point (Xm , Ym, zm) for a particular eigenmode, i, be-
comes:

IPio(Xe» Yo Zo s Xon s Yin > Zoy )| = CQuew ., s [N/m?] (C1)

1

V[4wi2k11121 + (w2_ wiZ)Z]i

where ¢ = speed of sound m/s
Q, = RMS volume velocity m3 /s
p = density of air kg/m3
V = volume of the room m3
w; = angular resonance frequency for the eigenmode s—1
w = angular frequency of emitted sound s—1
kmi = decay constant for the eigenmode s—1

and Vg and I, are the sound pressure distributions for sound source
and microphone position respectively. Both quantities are given by:

n,n

1

n,x

1

¥Y=W¥(x,y,z) =cos

n,
xcos—ly—’—ycos

X Y

z (C2)

z

where ny, n, and n, are the integers for the particular eigenmode.

If the sinusoidal volume velocity, Q,, in equation (C1), is replaced by a
volume velocity, g, which has a constant spectral density, (i.e. white
noise) then the squared sound pressure for the eigenmode can be ex-
pressed by:
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g’ ¥i¥,io?
(4w'2kmg+(w2'— wlz)z)dw (03)

pi(z)(xs,YS,Zs>xm aymazm)z j v2
0
where q = volume velocity spectral density m3/s/vVHz.
Solving the integral we obtain:

ctq?o? Wi ¥in
P0G Yo 2o X Y Z) = ~igie

(C4)

mi

where it is assumed that 4k, < w?

The space averaged squared sound pressure is obtained by replacing
V2 and ¥,;2 in (C4) by the space averaged values ¥ 2 and ¥ ;2.
These quantities have the same values and can be calculated from:

P2 =%j cos? nl"nxcosz%‘/—ny cos? BlﬂZdV (Cb)
vV N

Solving the integral we obtain:
Y2 = 1/8 for all ns >0 (oblique modes)
W2 = 1/4 for one n = 0 and two ns > O (tangential modes)

W 2= 1/2 for two ns = O and one n > O (axial modes)

kmi in (C4) can be replaced by

_3Inl0
mi 7 T .

1

k

where T, = reverberation time for the mode, i.
The space averaged squared sound pressure is therefore:

. ctq?o?aT,
POT I 10V2 (e, e, 2,,)°

(C6)

where the factors €,;, €, and €, have the following values:

xi

Tforn=0
2forn>0

m o
il
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